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Disorder, order, and domain wall roughening in the two-dimensional random field Ising model
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Ground states and domain walls are investigated with exact combinatorial optimization in two-dimensional
random field Ising magnets. The ground states break into domains above a length scale that depends exponen-
tially on the random field strength squared. For weak disorder, this paramagnetic structure has remnant long-
range order of the percolation type. The domain walls are super-rough in ordered systems with a roughness
exponentz close to 6/5. The interfaces exhibit rare fluctuations and multiscaling reminiscent of some models
of kinetic roughening and hydrodynamic turbulence.
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The random field Ising model attracts interest since it p
sents an example of competing mechanisms for order
disorder. The local spin couplings favor ferromagnetic ord
ing, whereas variations in the random fields favor disord
This competition affects thermodynamic properties. Dis
dered systems are very often governed by the ze
temperature behavior, or the structure and energy of
ground state~GS!. In the random field Ising model~RFIM!
statistical mechanics of interfaces or domain walls becom
the key question. This is important for finite-temperature d
namics, for coarsening, aging, and fluctuations. The inte
is in the scaling and universality in a problem dominated
a complicated, multivalley energy landscape@1,2#.

The effect of dimensionality on order or disorder w
solved by Aizenman and Wehr. They proved rigorously t
the two-dimensional~2D! RFIM has in the thermodynami
limit no long-range ferromagnetic character@3#. In 3D order
was shown to exist at finite temperatures and weak fields@4#,
and therefore the lower critical dimension of the RFIM is
Here we study the transition from order to disorder in the
RFIM: ground states and scaling properties of single dom
walls with varying system size. The expectation is that
ground state becomes unstable to domain formation a
breakup length scale@5# because of domain wall entrop
even at zero temperature. In contrast, a simple energ
Imry-Ma domain argument indicates for weak fields in tw
dimensions long-range order~if hLd/2,JLd21, whereh is
the RF strength,J the strength of ferromagnetic couplings,L
length scale, andd the dimension! @6,2#. This fails so that
domains, albeit large ones, do exist for arbitrarily we
fields. Existing finite temperature Monte Carlo@7# and exact
ground state results@8# do not extend into this regime.

The scaling properties of domain walls is studied h
with the domain wall renormalization group~DWRG!. One
considers DW’s imposed with boundary conditions, a
compares to systems without forced DW’s and with the sa
disorder to find the DW energy. The domain walls are p
dicted to be self-affine by functional renormalization gro
calculations and an Imry-Ma argument, with the roughn
exponentzd

RF5(52d)/3 @9,10#. zd
RF shows, e.g., how the

interface width scales,w;Lz (w25^z22 z̄2&, wherez is the
local interface height!. In this picturez vanishes at the uppe
PRE 581063-651X/98/58~5!/5217~4!/$15.00
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critical dimension and atd52 z251 @5,10#. The domain
wall energy would concurrently be expected to be line
E(L)5E0L1E1Lu. The energy fluctuation exponentu
should obey the exponent relationu52z1d23, similar to
the random bond Ising model and directed polymers@11,1#.
The 111-dimensional RF domain wall problem maps in t
continuum limit directly to the Kardar-Parisi-Zhang or Bur
er’s equation, the paradigm of interface models in disorde
media@12#, so that againz251 andu251 @13#.

The picture of self-affine DW’s has been claimed to
confirmed by both early transfer-matrix calculations@14# and
studies using combinatorial optimization@10,15#. In this
Rapid Communication this is shown to be false. The dom
walls exhibit rich scaling reminiscent of turbulent behavi
as in certain kinetic growth models@16,17# and in ordinary
hydrodynamics@18,19#. Also, the concept of self-affinity is
not valid because of the lengthscale induced by ground s
breakup.

Finding the ground state of the RFIM maps exactly in
the mininum-cut–maximum-flow problem of network o
combinatorial optimization@20#. The use of such algorithms
pioneered by Ogielski@21#, has recently started to becom
common, as one can do exact disorder averages for sys
governed by zero-temperature and energy landscape ef
@22#. A related problem solvable with the method is th
DAFF ~diluted antiferromagnet in a field! providing an ex-
perimental realization.

The application of combinatorial optimization starts b
augmenting the RFIM with two extra sites. The network o
timization problem is defined on a graph, in which each ed
corresponds to a site in the augmented RFIM. Each of
original sites is connected with one of the two extras, d
pending on the sign of the local fieldhi . The capacities of
the vertices in the graph are equal to either 2J or 2uhi u for
couplings to the extra sites. This is a network flow proble
since the connections equal local flow constraints or cap
ties. The maximum flow between the extra sites gives
ground state energy, and the division to two spin sta
among the Ising spins is the minimum cut that results in
maximum flow. This method is exact and does not suf
from metastability like normal Monte Carlo or optimizatio
with simulated annealing. We use an efficient push-rela
R5217 © 1998 The American Physical Society
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preflow-type @23# code. The CPU-time scales astCPU
;N1.2, with N;L2 increasing thus almost linearly inN.
Systems can be studied up toL51000 (N5106).

Figure 1 and the inset show examples of ground sta
with weak and strong disorder and with domain wa
enforcing or periodic boundary conditions, respectively@24#.
The random fieldshi obey either a bimodal distribution
(P(hi)5 1

2 @d(hi2D)1d(hi1D)#) or a Gaussian one

(P(hi)5 1/(A2pD) exp@ 1
2(hi /D)2#, D measures the standar

deviation,J51!. First we characterize the transition from th
case of Fig. 1, a ferromagnetic ground state here with
imposed domain wall, to that shown in the inset, with
negligible magnetization. Then the properties of single
main walls are studied.

We make the assumption of one single length scale, p
portional to that at which the order vanishes~e.g., the mag-
netization becomes zero!. We measure the probability of
purely ferromagnetic GS,PFM(L)5P(L,umu51), as a func-
tion of L with fixed D. This probability maps for both type
of disorder to the magnetization@m5m(PFM)#. The
break-up length scale is defined withPFM(L)50.5. The ad-
vantage is that the breakup of the ground state is visibl
much smallerL than with other order parameters, making
possible to study breakup to a domain structure withL
→`. Other choices could be the cluster size distribution,
spin-spin correlation length, magnetization, and so on.
example, the correlation length shows finite size effe
which might be partly explained below.

Lb for this definition is depicted for varyingD in Fig. 2.
The prediction that the 2D RFIM ground state should ha
no long-range order is based on the fact that at large eno
scales entropy, the many possible configurations availa

FIG. 1. Two typical examples of RFIM ground states with p
riodic and forced boundary conditions. Weak bimodal disorderD
510/17,L5100. Note the large jumps on the interface and the l
of overhangs. The interface is the boundary between the bl
white domains~different spin states!. Inset shows a strong Gaussia
disorder case,D52. Spins that point ‘‘down’’ in the groundstat
are drawn white. The ‘‘up’’ spins are black or grey if in the large
~percolation! cluster.
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should make the domain wall energy vanish@5#. Our results
yield, in agreement, an exponential length scale

Lb;exp~A@1/D#2!,

where the disorder-dependent constantA51.960.2 and 2.1
60.2 for bimodal and Gaussian disorder, respectively. T
definition of Lb implies that the magnetization vanishes a
larger L.Lb . The values ofA are different from the ones
obtained by finite-temperature Monte Carlo simulations
small L @7#. These results prove that the mechanism for
breakup of the GS is due to entropic effects.

No ferromagnetic order exists in the ensuing dom
structure with zero magnetization. For strong disorder o
can show that the spin-spin correlation length is proportio
to the average cluster size for bothL,Lb andL>Lb . Here
we study the disorder averaged properties of the largest c
ters. These are found to percolate and thus give rise to
dominant~the weight of the spanning cluster vanishes in t
thermodynamic limit! long-range order. For bimodal disor-
der the fractal dimension isdf51.9060.02 ~Fig. 2 inset!,
very close to the exact value of standard 2D percolation
48. The inset of Fig. 2 also shows the sum over the rand
fields of the percolation clusters. This sum scales with
same fractal dimension 1.90. Thus the Imry-Ma argumen
not true for the largest clusters as the global optimizat
produces domains whose magnetization is extensive.
summarize for weak disorder there is hidden order in
ground state of the RFIM structure in two dimensions. T
is not in contradiction to the exact Aizenman-Wehr-theor
sincem→0. However, it gives rise to nontrivial correlation
in the structure, thus order. For stronger fields there i
crossover to site percolation and a nonpercolating struc
~aspc;0.593 on a square lattice and nowp50.5!. The criti-
cal Dc , below which lattice effects are smeared out,

k
k/

FIG. 2. Lb vs (1/D)2 for bimodal and Gaussian disorder~closed
circles and open squares, respectively!, calculated fromPFM(Lb)
50.5. D5h/J for binomial andD5dh for Gaussian disorder. The
inset shows the average mass of spanning clusters for bimodD
525/13 up toL5470 ~open diamonds!. The plot shows also the
sum of the random fields of the sites belonging to the same clus
~closed triangles!. The 2D percolation fractal dimensiondf

591/48 is indicated with a line.
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(h/J)c52 for bimodal disorder andDc52.360.1 for Gauss-
ian, respectively. The threshold for the Gaussian case
rough estimate. It would be interesting but hard to anal
this percolation transition in detail, since one needsL.Lb .

Next we turn to interface scaling. Figure 3 shows t
interface width, the interface energyE, and the energy fluc-
tuationsDE25^E22Ē2& up toL5500– 1000.E is obtained
in the DWRG sense by subtracting the energy of a gro
state from one with an imposed domain wall and identi
disorder.^ & is the average over disorder. We take the so
on-solid ~SOS! limit: in the case of a multiply valued inter
face the highest location is chosen from the exact interf
configurations. The weight of overhangs is negligible
weak disorder and small systems. In the weak-disorder
gime the global roughness exponent is found asz.1.2
60.05. Asz.1 the RF interfaces are super-rough. This
however, true only up to a length scale, below which the
has already broken down~see inset, Fig. 1!. Above that scale
a domain wall becomes fractal, andz51. There is a sharp

FIG. 3. ~a! Scaling of the global interface width for bimoda
disorder.D52/3 ~open triangles! and 3/2~closed squares!. The line
indicates a least-squares fit with a roughness exponentz51.20
60.05. The inset shows the crossover in interface properties
increasing system size (D510/9). ~b! Scaling of the energy~per
length! for bimodal D51/3 ~open circles! and 5/12 ~closed
squares!. The inset shows the scaling of energy fluctuations forD
51/3.
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transition between these two regimes, and the data foD
510/9 in the inset of Fig. 3~a! has two regimes correspond
ing to ‘‘ferromagnetic’’ and ‘‘disordered’’ ground states
Figure 3~b! shows the DWRG result for the DW energ
there is a logarithmic correction to the DW energy in the F
phase. In the paramagnetic phase the energy has only a
nant contribution from the boundary conditions. For the F
phase the energy fluctuation exponent isu.1. The values for
the exponentsz and u disagree with the exponent relatio
u2d52z2d21 @11#.

If one studies interfaces based either on a mapping to
Burgers’-KPZ equation or functional RG calculations the
depend on the small slope approximation, which is a pr
lem if z.1. Figure 4 shows the statistics of interface flu
tuations in the form of the interface step height probabil
density function~PDF! f (Dzi ,i 11 ,L). Dzi ,i 11 is the height
difference between two neighboring sites (zi) along the SOS
interface (i 51, . . . ,L). The f (Dz,L) show stretched expo
nential behavior. The PDF’s are clearlyL dependent, but
only up to the breakup length scale for interfaces. The he
differences resemble velocity gradients or energy dissipa
in fluid turbulence and behavior in interface growth pro
lems @16,17,25,18# that are governed by intermittent, rar
events. The step height fluctuations are not restricted to
exact interfaces. A SOS transfer matrix calculation~allowing
for Dz.1! reproduces these features, and demonstrates
the interpretation of Ref.@14# is wrong since the true scalin
behavior is super-rough at, also, low temperatures. A mu
fractal study of the average step heightuDzu and the interface
height-height correlation functionsGk(r )5^uh( l )h( l 1r )uk&
indicates that the local interface scaling is multiaffine, e
Gk(r );Akr

akk. For instance,ak.0.88, . . . ,0.9 for k51,
but for alreadyk52 ak.0.66 with the exponent being
weak function ofL at fixed D. The higher exponentsak
decrease withk and increase withL for moderateL. Thus,
there is another analogy between height-height correlat
of the RFIM and velocity-velocity correlations in turbulenc
Both the amplitude ofG (Ak) and uDzu do not self-average
but scale withL andD. It is tempting to draw a parallel with
Lb in here and the outer length scale of turbulence. In b

th

FIG. 4. Interface step probability density function forh/J
51/2, L520,40,100,200,480. For simplicity the data includes on
those steps that do not involve local overhangs.
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cases the largest length scale is fixed by external conditi
the strength of randomness or the Reynolds number@26#.
The correspondence is not one-to-one, however, since
scaling properties depend on bothLb andL ~Fig. 4!.

In conclusion, we demonstrate the breakdown of
ground state, at zero temperature, in the 2D random fi
Ising model. There is however hidden, long-range orde
the form of the spanning cluster that seems first contradic
to destroyed ferromagnetic order. This arises by ‘‘entro
optimization’’ so that the cluster magnetization becomes
tensive. The annihilation of order with increasing sam
size is reflected in the properties of domain walls. For sm
systems and weak fields the domain walls are super-ro
with a roughness exponent that is well in excess of anal
estimates. This can be traced to ‘‘turbulent’’ rare interfa
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fluctuations, but in anequilibriumsystem in contrast to mod
els of kinetic surface roughening or Navier-Stokes turb
lence. In large systems the concept of an individual dom
wall becomes ill-defined. The domain wall energy has
logarithmic correction: one should study how far this lack
self-affinity penetrates the GS energy landscape prope
and, perhaps, dynamical behavior. It will be interesting
see if the nonstandard interface scaling properties persis
higher dimensions or in the presence of an applied field.
believe that this is so in the latter case, though the gro
states are naturally ferromagnetic. This would have con
quences for driven interfaces below the crossover to
nealed disorder for a strong enough driving force@25,27#.
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