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Disorder, order, and domain wall roughening in the two-dimensional random field Ising model

E. T. Seppk,! V. Petga,! and M. J. Alava?
IHelsinki University of Technology, Laboratory of Physics, P.O. Box 1100, 02015 HUT, Finland
Nordic Institute for Theoretical Physics, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
(Received 31 August 1998

Ground states and domain walls are investigated with exact combinatorial optimization in two-dimensional
random field Ising magnets. The ground states break into domains above a length scale that depends exponen-
tially on the random field strength squared. For weak disorder, this paramagnetic structure has remnant long-
range order of the percolation type. The domain walls are super-rough in ordered systems with a roughness
exponent/ close to 6/5. The interfaces exhibit rare fluctuations and multiscaling reminiscent of some models
of kinetic roughening and hydrodynamic turbulence.
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The random field Ising model attracts interest since it pre<ritical dimension and ad=2 ¢,=1 [5,10. The domain
sents an example of competing mechanisms for order andall energy would concurrently be expected to be linear,
disorder. The local spin couplings favor ferromagnetic order£(L)=EyL+E;L?. The energy fluctuation exponent
ing, whereas variations in the random fields favor disordershould obey the exponent relatigt+ 27+ d—3, similar to
This competition affects thermodynamic properties. Disorthe random bond Ising model and directed polynjédrs 1].
dered systems are very often governed by the zerofhe 1+ 1-dimensional RF domain wall problem maps in the
temperature behavior, or the structure and energy of theontinuum limit directly to the Kardar-Parisi-Zhang or Burg-
ground statgGS). In the random field Ising modéRFIM)  er’s equation, the paradigm of interface models in disordered
statistical mechanics of interfaces or domain walls becomesedia[12], so that againf,=1 and6,=1 [13].
the key question. This is important for finite-temperature dy- The picture of self-affine DW’s has been claimed to be
namics, for coarsening, aging, and fluctuations. The interesfonfirmed by both early transfer-matrix calculati¢td] and
is in the scaling and universality in a problem dominated bystudies using combinatorial optimizatiori0,15. In this
a complicated, multivalley energy landscdpe?]. Rapid Communication this is shown to be false. The domain

The effect of dimensionality on order or disorder waswalls exhibit rich scaling reminiscent of turbulent behavior
solved by Aizenman and Wehr. They proved rigorously thatas in certain kinetic growth mode[46,17] and in ordinary
the two-dimensiona(2D) RFIM has in the thermodynamic hydrodynamicg18,19. Also, the concept of self-affinity is
limit no long-range ferromagnetic charact&l. In 3D order  not valid because of the lengthscale induced by ground state
was shown to exist at finite temperatures and weak figltils  breakup.

and therefore the lower critical dimension of the RFIM is 2. Finding the ground state of the RFIM maps exactly into
Here we study the transition from order to disorder in the 2Dthe mininum-cut—maximum-flow problem of network or
RFIM: ground states and scaling properties of single domaigombinatorial optimizatiofi20]. The use of such algorithms,
walls with varying system size. The expectation is that thepioneered by Ogielski21], has recently started to become
ground state becomes unstable to domain formation at @ommon, as one can do exact disorder averages for systems
breakup length scal¢5] because of domain wall entropy governed by zero-temperature and energy landscape effects
even at zero temperature. In contrast, a simple energy gp2]. A related problem solvable with the method is the
Imry-Ma domain argument indicates for weak fields in two DAFF (diluted antiferromagnet in a fielcproviding an ex-
dimensions long-range ordéif hLY2<JL%", whereh is  perimental realization.
the RF strength] the strength of ferromagnetic couplings, The application of combinatorial optimization starts by
length scale, andl the dimension[6,2]. This fails so that augmenting the RFIM with two extra sites. The network op-
domains, albeit large ones, do exist for arbitrarily weaktimization problem is defined on a graph, in which each edge
fields. Existing finite temperature Monte Caflg| and exact corresponds to a site in the augmented RFIM. Each of the
ground state resulfs] do not extend into this regime. original sites is connected with one of the two extras, de-
The scaling properties of domain walls is studied hergpending on the sign of the local fielyj . The capacities of
with the domain wall renormalization groPWRG). One  the vertices in the graph are equal to eithdr@ 2|h;| for
considers DW’s imposed with boundary conditions, andcouplings to the extra sites. This is a network flow problem,
compares to systems without forced DW’s and with the sameince the connections equal local flow constraints or capaci-
disorder to find the DW energy. The domain walls are preties. The maximum flow between the extra sites gives the
dicted to be self-affine by functional renormalization groupground state energy, and the division to two spin states
calculations and an Imry-Ma argument, with the roughnesaimong the Ising spins is the minimum cut that results in the
exponent/3F=(5—d)/3 [9,10]. ¢;F shows, e.g., how the maximum flow. This method is exact and does not suffer
interface width scalesy~L¢ (w?=(z?—Z2), wherez is the ~ from metastability like normal Monte Carlo or optimization
local interface height In this picture vanishes at the upper with simulated annealing. We use an efficient push-relabel
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FIG. 2. Ly, vs (1/A)2 for bimodal and Gaussian disord@tosed

circles and open squares, respectiyebalculated fromPgy, (L)

FIG. 1. Two typical examples of RFIM ground states with pe- =0.5. A=h/J for binomial andA = h for Gaussian disorder. The
riodic and forced boundary conditions. Weak bimodal disorder, inset shows the average mass of spanning clusters for bindodal
=10/17,L=100. Note the large jumps on the interface and the lack=25/13 up toL =470 (open diamonds The plot shows also the
of overhangs. The interface is the boundary between the blacldum of the random fields of the sites belonging to the same clusters
white domaingdifferent spin statésInset shows a strong Gaussian (closed triangles The 2D percolation fractal dimensioml;
disorder caseA =2. Spins that point “down” in the groundstate =91/48 is indicated with a line.
are drawn white. The “up” spins are black or grey if in the largest
(percolation cluster. should make the domain wall energy vanj§f. Our results

yield, in agreement, an exponential length scale

preflow-type [23] code. The CPU-time scales aspy N 2
~N*2 with N~L? increasing thus almost linearly iN. Lo~ exp(ALLAT),
Systems can be studied uplie=1000 (N=10). where the disorder-dependent constart1.9+0.2 and 2.1

_Figure 1 and the inset show examples of ground states g 5 for himodal and Gaussian disorder, respectively. The
with weak and strong disorder and with domain wall- 4efinition of L, implies that the magnetization vanishes at a
enforcing or periodic boundary conditions, respect@].  |5rger| >, . The values ofA are different from the ones
The ran(ljom fieldsh; obey either a bimodal distribution piained by finite-temperature Monte Carlo simulations for
(P(hi)=z[8(hi—A)+5(hi+A)]) or a Gaussian one, gma|iL [7]. These results prove that the mechanism for the
(P(h))= 1/(\2mA) exf 3(h/A)%], A measures the standard breakup of the GS is due to entropic effects.
deviation,J=1). First we characterize the transition fromthe  No ferromagnetic order exists in the ensuing domain
case of Fig. 1, a ferromagnetic ground state here with astructure with zero magnetization. For strong disorder one
imposed domain wall, to that shown in the inset, with acan show that the spin-spin correlation length is proportional
negligible magnetization. Then the properties of single do+to the average cluster size for bdtk<L, andL=L,. Here
main walls are studied. we study the disorder averaged properties of the largest clus-

We make the assumption of one single length scale, praters. These are found to percolate and thus give rise to sub-
portional to that at which the order vanish@sg., the mag- dominant(the weight of the spanning cluster vanishes in the
netization becomes zeroWe measure the probability of a thermodynamic limit long-range order For bimodal disor-
purely ferromagnetic Gy (L)=P(L,|m|=1), asafunc- der the fractal dimension id;=1.90+0.02 (Fig. 2 inse},
tion of L with fixed A. This probability maps for both types very close to the exact value of standard 2D percolation 91/
of disorder to the magnetizatiomm=m(Pgy)]. The 48. The inset of Fig. 2 also shows the sum over the random
break-up length scale is defined wifly),(L)=0.5. The ad- fields of the percolation clusters. This sum scales with the
vantage is that the breakup of the ground state is visible sgame fractal dimension 1.90. Thus the Imry-Ma argument is
much smallelL than with other order parameters, making it not true for the largest clusters as the global optimization
possible to study breakup to a domain structure with produces domains whose magnetization is extensive. To
—oo. Other choices could be the cluster size distribution, thesummarize for weak disorder there is hidden order in the
spin-spin correlation length, magnetization, and so on. Foground state of the RFIM structure in two dimensions. This
example, the correlation length shows finite size effectsis not in contradiction to the exact Aizenman-Wehr-theorem
which might be partly explained below. sincem— 0. However, it gives rise to nontrivial correlations

L, for this definition is depicted for varying in Fig. 2.  in the structure, thus order. For stronger fields there is a
The prediction that the 2D RFIM ground state should havecrossover to site percolation and a nonpercolating structure
no long-range order is based on the fact that at large enouglasp.~0.593 on a square lattice and ngw# 0.5). The criti-
scales entropy, the many possible configurations availableal A., below which lattice effects are smeared out, is



RAPID COMMUNICATIONS

PRE 58 DISORDER, ORDER, AND DOMAIN WALL ROUGHENING . .. R5219
10°
B
10'
10° 5
3.0 w%@lbo ' FIG. 4. Interface step probability density function ftwJ
b) O%o =1/2,L=20,40,100,200,480. For simplicity the data includes only
25 1 - 0Co0p 00 1 those steps that do not involve local overhangs.
20+ .H..“.-- ] transition between these two regimes, and the dataAfor
. ‘ “un, . =10/9 in the inset of Fig. &) has two regimes correspond-
s e " ing to “ferromagnetic” and “disordered” ground states.
[Sd ] 0L & Figure 3b) shows the DWRG result for the DW energy:
B oooo° there is a logarithmic correction to the DW energy in the FM
1.0 ol S ] ] phase. In the paramagnetic phase the energy has only a rem-
L°° nant contribution from the boundary conditions. For the FM
05 | o ‘ . phase the energy fluctuation exponerf#isl1. The values for
10' 10° 10° the exponentg and 6 disagree with the exponent relation
0.0 L L - . 029=2{ 24— 1 [11].
10 10 10 10 If one studies interfaces based either on a mapping to the
L Burgers’-KPZ equation or functional RG calculations these

) ) ) ) depend on the small slope approximation, which is a prob-

FIG. 3. (a) Scaling of the global interface width for bimodal lem if {=1. Figure 4 shows the statistics of interface fluc-

disorder.a =2/3 (open triangleand 3/2(closed squargsThe line  ,ations in the form of the interface step height probability
indicates a least-squares fit with a roughness expoteri.20 density function(PDF) f(Az ;. 1,L). Az ., is the height
+0.05. The inset shows the crossover in interface properties Wit%ifference between two neiI’Hrblo’rin' sitI’I;(lalon the SOS
increasing system sizeA(=10/9). (b) Scaling of the energyper interface (=1 L). The ?(AZ L)gshgfv stret(?hed expo-

length for bimodal A=1/3 (open circles and 5/12 (closed . ! ,
squares The inset shows the scaling of energy fluctuationsXor nential behavior. The PDF's are Cleaﬂy dependent, bUt_
=1/3. only up to the breakup length scale for interfaces. The height
differences resemble velocity gradients or energy dissipation
(h/J).=2 for bimodal disorder and ;=2.3=0.1 for Gauss- in fluid turbulence and behavior in interface growth prob-
ian, respectively. The threshold for the Gaussian case is lams[16,17,25,18 that are governed by intermittent, rare
rough estimate. It would be interesting but hard to analyzeevents. The step height fluctuations are not restricted to the
this percolation transition in detail, since one nekdsL,. exact interfaces. A SOS transfer matrix calculatiatowing
Next we turn to interface scaling. Figure 3 shows thefor Az>1) reproduces these features, and demonstrates that
interface width, the interface ener@y and the energy fluc- the interpretation of Ref.14] is wrong since the true scaling
tuationsAE2=(E2—E?) up toL =500—1000E is obtained behavior is super-rough at, also, low temperatures. A multi-
in the DWRG sense by subtracting the energy of a groundractal study of the average step height| and the interface
state from one with an imposed domain wall and identicaheight-height correlation functionG,(r)=(|h(I)h(I+r)[*)
disorder.{ ) is the average over disorder. We take the solid-indicates that the local interface scaling is multiaffine, e.qg.,
on-solid (SO9 limit: in the case of a multiply valued inter- G (r)~A,r k. For instance,a,=0.88...,0.9 for k=1,
face the highest location is chosen from the exact interfacbut for alreadyk=2 «,=0.66 with the exponent being a
configurations. The weight of overhangs is negligible forweak function ofL at fixed A. The higher exponents,
weak disorder and small systems. In the weak-disorder redecrease wittk and increase with. for moderatel.. Thus,
gime the global roughness exponent is found fas1.2  there is another analogy between height-height correlations
+0.05. As/>1 the RF interfaces are super-rough. This is,of the RFIM and velocity-velocity correlations in turbulence.
however, true only up to a length scale, below which the GBoth the amplitude o5 (A,) and|Az| do not self-average
has already broken dow(see inset, Fig. )1 Above that scale but scale withL andA. It is tempting to draw a parallel with
a domain wall becomes fractal, ade=1. There is a sharp Ly in here and the outer length scale of turbulence. In both
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cases the largest length scale is fixed by external condition$luctuations, but in aequilibriumsystem in contrast to mod-
the strength of randomness or the Reynolds nuniBéf.  els of kinetic surface roughening or Navier-Stokes turbu-
The correspondence is not one-to-one, however, since tHence. In large systems the concept of an individual domain
scaling properties depend on bdth andL (Fig. 4). wall becomes ill-defined. The domain wall energy has a
In conclusion, we demonstrate the breakdown of thdogarithmic correction: one should study how far this lack of
ground state, at zero temperature, in the 2D random fielgelf-affinity penetrates the GS energy landscape properties
Ising model. There is however hidden, long-range order if?nd: Perhaps, dynamical behavior. It will be interesting to
the form of the spanning cluster that seems first contradictory€€ If the nonstandard interface scaling properties persist in
to destroyed ferromagnetic order. This arises by “entropid'9her dimensions or in the presence of an applied field. We

optimization” so that the cluster magnetization becomes ex- elieve that this is so in the Iatt(_ar case, though the ground
states are naturally ferromagnetic. This would have conse-

tensive. The annihilation of order with increasing sample uences for driven interfaces below the crossover to an-

size is reflected in the properties of domain walls. For smalﬂealed disorder for a strong enough driving fof26,27
systems and weak fields the domain walls are super-rough, T

with a roughness exponent that is well in excess of analytic This work has been supported by the Academy of Finland
estimates. This can be traced to “turbulent” rare interface(MATRA and M. J. A).
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